Generative KI und ChatGPT haben uns in ihren Bann gezogen. Auch Vermögensverwalter beobachten die Entwicklungen sehr genau.
30.11.2023 | 10:27 Uhr
Maschinelles Lernen (ML) wird gerade als DIE Methode für die Aktienauswahl gepriesen. In der Praxis machen sich die Vorteile von ML und künstlicher Intelligenz (KI) beim Portfolioaufbau jedoch auf ganz unterschiedliche Weise bemerkbar. Für uns ist KI lediglich die letzte Phase in der langen Entwicklung des quantitativen Investierens. Sozusagen Quant 2.0.
In den 1980er Jahren haben quantitative Portfoliomanager erstmals begonnen, Algorithmen für die Auswahl von Investments und das Risikomanagement einzusetzen. Diese einfachen Einzelfaktor-Modelle, die zur Bestimmung von Risikoprämien verwendet wurden, entwickelten sich schon bald zu komplexeren Multifaktor-Systemen, die ganz unterschiedliche Phänomene wie Veränderungen in der Analystenstimmung, der Anlegerpositionierung und der Stabilität der Unternehmensgewinne analysierten. Heute arbeiten quantitative Investoren mit einer Vielzahl von Systemen, die auf maschinellem Lernen basieren. Diese leistungsstarke neue Technologie muss breitere Anwendung finden, das steht ausser Frage.
Portfolioaufbau mit KI
Die Digitalisierung der Weltwirtschaft hat zu einer explosionsartigen Zunahme an Daten geführt, sowohl bei strukturierten Daten wie den von den Unternehmen veröffentlichten Geschäftsergebnissen als auch bei unstrukturierten Daten wie Texten, Videodateien und Bildern. Die Analyse und Kombination dieser Daten mit immer grösseren Modellen erweist sich für quantitative Portfoliomanager als enorme Herausforderung – aber auch als Chance.
KI hilft an mehreren Fronten:
Beim Einsatz von KI für Investments ist Transparenz das A und O
Viele aktuelle Forschungsbeiträge belegen, dass ML-Modelle bessere Renditeprognossen treffen.
In der Investmentpraxis ist der Einsatz von KI-basierten Modellen jedoch komplex und mit Risiken behaftet. Die Annahme, dass Investoren KI als Blackbox akzeptieren, ist hinfällig geworden. Vielmehr müssen Merkmale, Positionen, Risiken und Performance der zugrunde liegenden Inputs aufgeschlüsselt werden. Transparenz ist der Schlüssel, was unser quantitatives Team in dem Beitrag Performance attribution of machine learning methods for stock returns prediction, der im Journal of Finance and Data Science veröffentlicht wurde, eingehend untersucht hat.
Was hat unsere eigene Analyse der Renditeaufschlüsselung ergeben?
Erstens, dass ein Teil der Überrendite aus KI-gesteuerten Modellen aus Strategien wie „Umkehr“ stammt, das heisst aus Aktien, bei denen aufgrund eines bestimmten Renditemusters eine Richtungsänderung wahrscheinlich ist. Oder „kurzfristiges Momentum“, das heisst Aktien, die weiter ihrem derzeitigen Kurs folgen. Dabei handelt es sich um Strategien, die von auf statistische Arbitrage fokussierten Managern in traditionellen Modellen eingesetzt werden.
Ein anderer Teil der Überrendite ergibt sich aus einer viel grösseren Anzahl von Merkmalen als sie in traditionellen quantitativen Modellen effektiv genutzt werden können. Traditionelle Modelle analysieren in der Regel mehrere Dutzend solcher Merkmale. KI-gestützte Systeme dagegen können mehrere hundert verarbeiten und sind ausserdem in der Lage, den Merkmalen, die sich am meisten positiv auf die Rendite auswirken, ein höheres Gewicht zuzuweisen.
Der letzte Teil der Überrendite ergibt sich aus den Wechselwirkungen zwischen den in die Analyse einbezogenen Merkmalen. So verhalten sich beispielsweise Aktien, denen gegenüber die Analystenstimmung positiv ist und bei denen das Short-Interesse gering ist – also nur sehr wenige Hedgefonds eine Shortposition halten –, anders als Aktien, bei denen das Gegenteil der Fall ist.
Menschliches Urteilsvermögen ist auch beim Einsatz künstlicher Intelligenz nach wie vor unerlässlich
Die Entwicklung eines ML-Modells, das zuverlässig, schnell und genau ist und laufend überwacht und angepasst werden kann, ist kompliziert und zeitaufwändig. Für ML-Modelle werden riesige Mengen an Daten benötigt,
"was es für den einzelnen Portfoliomanager und Analysten schwierig macht, diese zu überwachen. Man braucht eine robuste Plattform für den Einsatz von KI beim Investieren"
– Stéphane Daul, Senior Quantitative Analyst
KI-Modelle:
Um diese Herausforderungen zu bewältigen, ist eine robuste KI-gestützte Operations Plattform unerlässlich. Diese sollte mit spezifischen Tools ausgestattet sein, die die Reproduzierbarkeit, Versionskontrolle, Skalierbarkeit und Compliance gewährleisten.
Der Einsatz von KI beim Portfolioaufbau erfordert eine nahtlose Zusammenarbeit zwischen Ingenieuren, Datenwissenschaftlern und Portfoliomanagern, die auf die Entwicklung eines transparenten Entscheidungsprozesses abzielt, der Alpha generiert.
Marketingdokument. Alle Formen von Kapitalanlagen sind mit Risiken
verbunden. Der Wert von Anlagen und die daraus erzielten Erträge sind
nicht garantiert und können sowohl steigen als auch fallen, so dass Sie
den ursprünglich investierten Betrag möglicherweise nicht
zurückerhalten.
Pictet Asset Management 2023 Alle Rechte vorbehalten. Bitte lesen Sie die Geschäftsbedingungen, bevor Sie die Website konsultieren.
Einige der auf dieser Website veröffentlichten Fotos wurden von Stéphane
Couturier, Magnus Arrevad, Lundi 13, Phovea, 13Photo, Magnum Photos,
Club Photo Pictet aufgenommen.
Dieser Inhalt ist für professionelle Anleger bestimmt. Mit Klick auf "Weiter" bestätigen Sie, dass Sie ein professioneller Anleger sind und stimmen unserer Datenschutzerklärung zu.
Weiter
Diesen Beitrag teilen: